勾股数的规律,常用勾股数顺口溜

天美资源网

勾股数的规律,常用勾股数顺口溜?

勾股数就是可以构成一个直角三角形三边的一组正整数。

勾股数顺口溜为勾三股四弦五,5月12记一生,连续偶数6,8,10,八月十五在一起。

勾股数的规律,常用勾股数顺口溜

勾股数顺口溜

3,4,5:勾三股四弦五

5,12,13:5月12记一生(13)

6,8,10:连续的偶数

8,15,17:八月十五在一起(17)

特殊勾股数:

连续的勾股数只有3,4,5

连续的偶数勾股数只有6,8,10

勾股数的含义

勾股数,又名毕氏三元数。勾股数就是可以构成一个直角三角形三边的一组正整数。勾股定理:直角三角形两条直角边a、b的平方和等于斜边c的平方(a²+b²=c²)。

勾股定理的含义

勾股定理是一个基本的几何定理,指直角三角形的两条直角边的平方和等于斜边的平方。中国古代称直角三角形为勾股形,并且直角边中较小者为勾,另一长直角边为股,斜边为弦,所以称这个定理为勾股定理,也有人称商高定理。

勾股定理现约有500种证明方法,是数学定理中证明方法最多的定理之一。勾股定理是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。在中国,周朝时期的商高提出了“勾三股四弦五”的勾股定理的特例。在西方,最早提出并证明此定理的为公元前6世纪古希腊的毕达哥拉斯学派,他用演绎法证明了直角三角形斜边平方等于两直角边平方之和。

勾股数如何做?

勾股数凡是可以构成一个直角三角形三边的一组正整数,称之为勾股数。

①观察3,4,5;5,12,13;7,24,25;…发现这些勾股数都是奇数,且从3起九没有间断过。计算0.5(9-1),0.5(9+1)与0.5(25-1),0.5(25+1),并根据你发现的规律写出分别能表示7,24,25的股和弦的算式。

②根据①的规律,用n的代数式来表示所有这些勾股数的勾、股、弦,合情猜想他们之间的两种相等关系,并对其中一种猜想加以说明。

③继续观察4,3,5;6,8,10;8,15,17;…可以发现各组的第一个数都是偶数,且从4起也没有间断过,运用上述类似的探索方法,之间用m的代数式来表示它们的股合弦。勾股数 - 构成直角三角形的充分且必要条件设直角三角形三边长为a、b、c,由勾股定理知a2+b2=c2,这是构成直角三角形三边的充分且必要的条件。因此,要求一组勾股数就是要解不定方程x2+y2=z2,求出正整数解。

例:已知在△ABC中,三边长分别是a、b、c,a=n2-1,b=2n,c=n2+1(n>1),求证:∠C=90°。此例说明了对于大于2的任意偶数2n(n>1),都可构成一组勾股数,三边分别是:2n、n2-1、n2+1。如:6、8、10,8、15、17、10、24、26…等。再来看下面这些勾股数:3、4、5、5、12、13,7、24、25、9、40、41,11、60、61…这些勾股数都是以奇数为一边构成的直角三角形。由上例已知任意一个大于2的偶数可以构成一组勾股数,实际上以任意一个大于1的奇数2n+1(n>1)为边也可以构成勾股数,其三边分别是2n+1、2n2+2n、2n2+2n+1,这可以通过勾股定理的逆定理获证。勾股数 - 特点观察分析上述的勾股数,

可看出它们具有下列二个特点:1、直角三角形短直角边为奇数,另一条直角边与斜边是两个连续自然数。

2、一个直角三角形的周长等于短直角边的平方与这边的和。掌握上述二个特点,为解一类题提供了方便。例:直角三角形的三条边的长度是正整数,其中一条短直角边的长度是13,求这个直角三角形的周长是多少?

用特点1解:设这个直角三角形三边分别为13、x、x+1,则有:169+x2=(x+1)2,解得x=84,此三角形周长=13+84+85=182。

用特点2解:此直角三角形是以奇数为边构成的直角三角形,因此周长=169+13=182。

勾股数都是整数吗?

勾股数不一定是整数。勾股定理中的三个数,在一般情况下不都是整数。但勾股数的定义就是整数组。比如3,4,5就是一组勾股数。

什么是勾股数

勾股数,又名毕氏三元数。勾股数就是可以构成一个直角三角形三边的一组正整数。勾股定理:直角三角形两条直角边a、b的平方和等于斜边c的平方(a²+b²=c²)。

(3n、4n、5n)(n是正整数)(这是最著名的一组!俗称“勾三,股四,弦五”。古人把较短的直角边称为勾,较长直角边称为股,而斜边则为弦。)(5n、12n、13n)(n是正整数)。

常见勾股数组有什么

常见组合:

3,4,5:勾三股四弦五;

5,12,13:5·21(12)记一生(13);

6,8,10:连续的偶数;

8,15,17:八月十五在一起(17)。

特殊组合:

连续的勾股数只有3,4,5;

连续的偶数勾股数只有6,8,10

中考数学怎么才能多拿分?

动态几何问题已经成为中考试题的一大热点题型.这类试题以运动的点、线段、变化的角、图形的面积为基本条件,给出一个或多个变量,要求确定变量与其他量之间的关系,或变量在一定条件为定值时,进行相关的几何计算和综合解答。

今天王老师以下面这些题型为例,谈谈此类问题的思路突破与解题反思,希望能帮助同学们提高数学成绩。

专题一

建立动点问题函数解析式

函数揭示了运动变化过程中量与量之间的变化规律是初中数学的重要内容。

动点问题反映的是一种函数思想,由于某一个点或某图形的有条件地运动变化,引起未知量与已知量间的一种变化关系,这种变化关系就是动点问题中的函数关系。

那么我们怎样建立这种函数解析式呢?下面王老师结合中考试题给大家举例分析。

Part 1

应用勾股定理建立函数解析式

Part 2

应用比例式建立函数解析式

Part 3

应用求图形面积的方法

建立函数关系式

专题二

函数中因动点产生的相似三角形

函数中因动点产生的相似三角形问题一般有三个解题途径:

①求相似三角形的第三个顶点时,先要分析已知三角形的边和角的特点,进而得出已知三角形是否为特殊三角形。根据未知三角形中已知边与已知三角形的可能对应边分类讨论。

②或利用已知三角形中对应角,在未知三角形中利用勾股定理、三角函数、对称、旋转等知识来推导边的大小。

③若两个三角形的各边均未给出,则应先设所求点的坐标进而用函数解析式来表示各边的长度,之后利用相似来列方程求解。

专题三

中考动点题目练习

根号3等多少?

根号3≈1.732。这是一个无理数,也就是一个无限不循环小数。无论算多久也算不出小数部分的规律。

像这类的无理数开根最好的办法就是记住它。

扩展资料:

开根也叫开方,指求一个数的方根的运算,为乘方的逆运算,在中国古代也指求二次及高次方程(包括二项方程)的正根。在实数范围内,负数无法开偶次根。正根又称算数根。

开根为乘方的逆运算,包括开平方,开立方,或开n次方。先举个例子,2的平方是4吧,那么4开平方就是2了,2的立方是8,8开立方就是2,2的5次方是32,32开5次方根就是2。

根号2约等于1.414

根号3约等于1.732

根号5约等于2.236

根号7约等于2.646

根号10约等于3.162

根号11约等于3.317

根号13约等于3.606

免责声明:由于无法甄别是否为投稿用户创作以及文章的准确性,本站尊重并保护知识产权,根据《信息网络传播权保护条例》,如我们转载的作品侵犯了您的权利,请您通知我们,请将本侵权页面网址发送邮件到qingge@88.com,深感抱歉,我们会做删除处理。