生物质能利用,新能源利用主要包括哪几个方面的内容?
正在开发太阳能、地热能、风能、海洋能、生物质能和核聚变能等新能源回。 新能源( NE):答又称非常规能源。一般是指在新技术基础上加以开发利用的可再生能源,包括太阳能、生物质能、风能、地热能、波浪能、洋流能和潮汐能
生物质能的优点和缺点是什么?
生物质能是指利用大气、水、土地等通过光合作用而产生的各种有机体,即一切有生命的可以生长的有机物质通称为生物质。它包括植物、动物和微生物。
生物质能的广义概念:生物质包括所有的植物、微生物以及以植物、微生物为食物的动物及其生产的废弃物。有代表性的如农作物、农作物废弃物、木材、木材废弃物和动物粪便。
生物质能的狭义概念:生物质主要是指农林业生产过程中除粮食、果实以外的秸秆、树木等木质纤维素(简称木质素)、农产品加工业下脚料、农林废弃物及畜牧业生产过程中的禽畜粪便和废弃物等物质。特点:可再生、低污染、分布广泛。
生物质能的优点可分为以下几点
①生物质能可再生,生物质能根本就是来源于太阳能,而太阳能是无穷无尽的,并且通过植物的光合作用,将太阳能转化成化学能,然后储存在生物体内,因此只要确保植物光合作用顺畅进行,就能生产出源源不断的能量。所以说生物质能是可以再生的。
②环境污染小,通常生物质能中含有对环境有害物质的含量非常低,而在植物光合作用过程中,又吸收了大量的二氧化碳,减少了温室气体,并且释放氧气,因此,提倡生物质能的应用,一定程度上促进了大自然的碳循环,对自然界就要很大的益处。
③原料丰富。生物质能源资源丰富,分布广泛。根据世界自然基金会的预计,全球生物质能源潜在可利用量达350EJ/年(约合82.12 亿吨标准油,相当于2009年全球能源消耗量的73%)。
虽然说生物质能的优点如此突出,但是缺点也不是说没有的。
首先,生物质能的生产周期很长,依靠生物自己来获取能源,这个时间本来就不短,而且在后期加工处理中,经常是通过发酵提取等耗时耗力的手段来最终生成能源物质。样的生产效率远远比不上挖掘石油和采集天然气。
其次,生物质能的生产过程复杂,为什么这么说呢,就比如像生产乙醇,使用的是废弃的农作物进行发酵,首先要收购(最好是已经超过了保质期的)农作物,然后再将其放置于发酵罐中进行发酵,在这期间要实时监控发酵罐中的温湿度,发酵出来的原液还需进行多次过滤,提纯,最终才得到目标产物,这样看来,生产过程比单纯的采集天然气等传统的能源生产更加复杂。所以相应的资金投入就会大大增长。
还有,生物质能受地域限制,像一些农业并不太发达的地区,所能利用起来的生物质能就很少,相应的在该地区推广使用生物质能就困难重重,而且又想要在该地区用上生物质能,所需的运输成本也会大大提高。
总的来说,现在大面积推广生物质能还是有很大的困难,但相信在以后科技日益发展的情况下,像生物质能这类清洁能源一定会普及到千家万户的。
生物质能的开发利用包括哪两个方面?
生物质能的开发利用包括生物质能资源的获取与生物质能的转化。1. 生物质能资源的获取:生物质能的资源主要来自于植物、废弃物等。获取生物质能资源包括农林废弃物回收利用、能源作物种植、城市垃圾处理等方式。
2. 生物质能的转化:将生物质转化成可用的能源形式,如生物质发电、生物质热能利用等。生物质能的转化包括生物质热化学转化、生物质气化和生物质液化等方式。
总之,生物质能的开发利用需要对生物质资源的获取
生物材料的特点和用途?
1.生物质材料的定义
生物质材料是指由动物、植物及微生物等生命体衍生得到的材料,主要由有机高分子物质组成,在化学成分上生物质主要由碳、氢、氧三种元素组成。由于是动物、植物及微生物等生命体衍生得到,未经化学修饰的生物质材料容易被自然界微生物降解为水、二氧化碳和其他小分子,其产物能再次进入自然循环,因此生物质材料具备可再生和可生物降解的重要特征。
常见的生物质材料有木材、秸秆、竹材、淀粉、树皮、纤维素、木质素、半纤维素、蛋白质、甲壳素等。
生物质材料都含有碳、氢、氧三种元素,部分生物质材料还可能含有氮、硫、钠等元素。
生物质材料的种类多、分布广、储量丰富。
生物质材料与合成高分子材料相比,都具有较好的生物降解性,绝大部分生物质材料在自然环境中很快被微生物完全降解为水、二氧化碳和其他小分子。
生物质材料能够再生。
生物质材料能够进行与功能基相关的聚合物化学反应。
水分对生物质材料的性能影响明显。
生物质材料通常是多组分伴生。
生物质材料的结构和性能变异大。
生物质材料提取、加工和利用相对困难。
4.生物质材料的应用
生物质材料已得到广泛的应用。像合成高分子材料一样,生物质材料可以制成塑料、纤维、涂料、粘结剂、功能材料和复合材料等,应用在生产生活的各个领域中。生物质材料的利用方法主要有如下四个方面:
直接利用。通过物理或机械加工,直接将生物质材料制成各种产品,如将棉花纺线,再制成布匹、纱布等;将木材制成各种实木家具、饰品等。
改性利用。基于生物质材料所含的功能基,通过聚合物化学反应,制备出化学结构和性能与反应前不同的材料,这是生物质材料应用的主要方法。主要的聚合物化学反应有衍生化、接枝、交联等。
复合或共混。将一种生物质材料与另一种生物质材料或者合成高分子材料通过复合或共混的方法,制备具有更好品质的新材料,如将淀粉添加到聚乙烯中,制成淀粉共混型聚乙烯农用薄膜,使之具有一定的生物降解性;将木质素在偶联剂存在下与聚乙烯复合,制得的木质素-聚乙烯复合材料不仅成本降低,还能提高力学强度和热稳定性。
转化利用。在热、催化剂存在下,将生物质材料转化成分子量较小的化工原料,如将木材、木质素、单宁、淀粉、树皮等在苯酚或聚乙二醇存在下液化,转变为活性基团更多、分子量小的产物。这些产物可被用作制备塑料、泡沫、胶黏剂等高分子材料。此外,通过裂解或发酵,将生物质转化为燃油、燃气、乙醇等能源材料也是生物质材料的一种转化利用方法。
土地利用变化特征?
土地覆被和土地利用变化会通过对地表反照率、蒸散、温室气体的源和汇,以及气候系统的其他性质的改变而产生辐射强迫,进而影响区域或全球气候。
联合国政府间气候变化专门委员会在《土地利用、土地利用变化和类型》特别报告编写提纲中列出了减少温室气体排放的土地利用变化的一些活动,涉及可耕地的保护和转换、草地的保护和改良、林地的管理、湿地的保护、退化土地的恢复、保护区、农林业、城镇植被、清洁生物质能、农产品和林产品等。